$nearSphere
The $nearSphere operator returns documents whose location fields are near a specified point on a sphere, sorted by distance on a spherical surface.
$nearSphere
The $nearSphere operator returns documents with location fields near a specified point on a sphere, calculating distances using spherical geometry. The operator is more accurate for Earth-based calculations than $near.
Syntax
{
<location field>: {
$nearSphere: {
$geometry: {
type: "Point",
coordinates: [<longitude>, <latitude>]
},
$maxDistance: <distance in meters>,
$minDistance: <distance in meters>
}
}
}Parameters
| Parameter | Description |
|---|---|
location field | The field containing the GeoJSON Point |
$geometry | GeoJSON Point object specifying the center point |
$maxDistance | Optional. Maximum distance in meters on a spherical surface |
$minDistance | Optional. Minimum distance in meters on a spherical surface |
Examples
Let's understand the usage with sample json from stores dataset.
{
"_id": "a715ab0f-4c6e-4e9d-a812-f2fab11ce0b6",
"name": "Lakeshore Retail | Holiday Supply Hub - Marvinfort",
"location": { "lat": -74.0427, "lon": 160.8154 },
"staff": { "employeeCount": { "fullTime": 9, "partTime": 18 } },
"sales": {
"salesByCategory": [ { "categoryName": "Stockings", "totalSales": 25731 } ],
"revenue": 25731
},
"promotionEvents": [
{
"eventName": "Mega Savings Extravaganza",
"promotionalDates": {
"startDate": { "Year": 2023, "Month": 6, "Day": 29 },
"endDate": { "Year": 2023, "Month": 7, "Day": 7 }
},
"discounts": [
{ "categoryName": "Stockings", "discountPercentage": 16 },
{ "categoryName": "Tree Ornaments", "discountPercentage": 8 }
]
},
{
"eventName": "Incredible Discount Days",
"promotionalDates": {
"startDate": { "Year": 2023, "Month": 9, "Day": 27 },
"endDate": { "Year": 2023, "Month": 10, "Day": 4 }
},
"discounts": [
{ "categoryName": "Stockings", "discountPercentage": 11 },
{ "categoryName": "Holiday Cards", "discountPercentage": 9 }
]
},
{
"eventName": "Massive Deal Mania",
"promotionalDates": {
"startDate": { "Year": 2023, "Month": 12, "Day": 26 },
"endDate": { "Year": 2024, "Month": 1, "Day": 2 }
},
"discounts": [
{ "categoryName": "Gift Bags", "discountPercentage": 21 },
{ "categoryName": "Bows", "discountPercentage": 19 }
]
},
{
"eventName": "Super Saver Soiree",
"promotionalDates": {
"startDate": { "Year": 2024, "Month": 3, "Day": 25 },
"endDate": { "Year": 2024, "Month": 4, "Day": 1 }
},
"discounts": [
{ "categoryName": "Tree Ornaments", "discountPercentage": 15 },
{ "categoryName": "Stockings", "discountPercentage": 14 }
]
},
{
"eventName": "Fantastic Savings Fiesta",
"promotionalDates": {
"startDate": { "Year": 2024, "Month": 6, "Day": 23 },
"endDate": { "Year": 2024, "Month": 6, "Day": 30 }
},
"discounts": [
{ "categoryName": "Stockings", "discountPercentage": 24 },
{ "categoryName": "Gift Wrap", "discountPercentage": 16 }
]
},
{
"eventName": "Price Plunge Party",
"promotionalDates": {
"startDate": { "Year": 2024, "Month": 9, "Day": 21 },
"endDate": { "Year": 2024, "Month": 9, "Day": 28 }
},
"discounts": [
{ "categoryName": "Holiday Tableware", "discountPercentage": 13 },
{ "categoryName": "Holiday Cards", "discountPercentage": 11 }
]
}
],
"company": "Lakeshore Retail",
"city": "Marvinfort",
"storeOpeningDate": { "$date": "2024-10-01T18:24:02.586Z" },
"lastUpdated": { "$timestamp": { "t": 1730485442, "i": 1 } },
"storeFeatures": 38
}For better performance, start with creating the required 2dsphere index.
db.stores.createIndex({ "location": "2dsphere" })Example 1: Basic spherical search
The query retrieves stores that are closest to a specified Point (-141.9922, 16.8331) on a spherical (Earth-like) surface.
db.stores.find({
'location': {
$nearSphere: {
$geometry: {
type: "Point",
coordinates: [-141.9922, 16.8331]
}
}
}
}, {
name: 1,
location: 1
}).limit(2)The first two results returned by this query are:
[
{
"_id": "643b2756-c22d-4063-9777-0945b9926346",
"name": "Contoso, Ltd. | Outdoor Furniture Corner - Pagacfort",
"location": {
"type": "Point",
"coordinates": [152.1353, -89.8688]
}
},
{
"_id": "daa71e60-75d4-4e03-8b45-9df59af0811f",
"name": "First Up Consultants | Handbag Corner - South Salvatore",
"location": {
"type": "Point",
"coordinates": [150.2305, -89.8431]
}
}
]Example 2: Complex distance analysis
This query retrieves stores between 20 meter and 200 meter from Point (65.3765, -44.8674). The query searches in a "donut-shaped" area - finding stores that are at least 20 meters away but no more than 200 meters from the specified point.
db.stores.aggregate([
{
$geoNear: {
near: {
type: "Point",
coordinates: [65.3765, -44.8674]
},
distanceField: "sphericalDistance",
minDistance: 20,
maxDistance: 200,
spherical: true
}
},
{
$project: {
name: 1,
location: 1,
distanceKm: { $divide: ["$sphericalDistance", 1000] },
_id: 0
}
},
{
$limit: 2
}
])Key difference between the operator $nearSphere and $near.
- Former uses spherical geometry for distance calculations.
- Former is more accurate for Earth-based distance calculations.
- Former is better for applications requiring precise global distance calculations